Copied to
clipboard

?

G = C42.144D10order 320 = 26·5

144th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.144D10, C10.922- (1+4), C10.1282+ (1+4), C202Q831C2, (Q8×Dic5)⋊21C2, (D4×Dic5)⋊32C2, C4.4D415D5, D103Q833C2, (C2×D4).177D10, C202D4.14C2, C42⋊D521C2, (C2×C20).82C23, (C2×Q8).140D10, C22⋊C4.37D10, C20.127(C4○D4), C4.39(D42D5), (C2×C10).226C24, (C4×C20).189C22, C2.52(D48D10), C23.48(C22×D5), Dic5.5D442C2, (D4×C10).159C22, C23.D1042C2, C22.D2027C2, C4⋊Dic5.236C22, (C22×C10).56C23, (Q8×C10).130C22, (C22×D5).98C23, C22.247(C23×D5), Dic5.14D442C2, C23.D5.59C22, C59(C22.36C24), (C4×Dic5).144C22, (C2×Dic10).40C22, (C2×Dic5).116C23, C10.D4.49C22, C2.53(D4.10D10), D10⋊C4.111C22, (C22×Dic5).146C22, C10.94(C2×C4○D4), (C5×C4.4D4)⋊18C2, C2.58(C2×D42D5), (C2×C4×D5).131C22, (C2×C4).199(C22×D5), (C2×C5⋊D4).64C22, (C5×C22⋊C4).68C22, SmallGroup(320,1354)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.144D10
C1C5C10C2×C10C22×D5C2×C4×D5C42⋊D5 — C42.144D10
C5C2×C10 — C42.144D10

Subgroups: 734 in 216 conjugacy classes, 95 normal (43 characteristic)
C1, C2 [×3], C2 [×3], C4 [×2], C4 [×11], C22, C22 [×9], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×11], D4 [×4], Q8 [×4], C23 [×2], C23, D5, C10 [×3], C10 [×2], C42, C42 [×3], C22⋊C4 [×4], C22⋊C4 [×8], C4⋊C4 [×10], C22×C4 [×3], C2×D4, C2×D4 [×2], C2×Q8, C2×Q8 [×2], Dic5 [×7], C20 [×2], C20 [×4], D10 [×3], C2×C10, C2×C10 [×6], C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8 [×3], C22.D4 [×2], C4.4D4, C4.4D4 [×2], C422C2 [×2], C4⋊Q8, Dic10 [×2], C4×D5 [×2], C2×Dic5 [×3], C2×Dic5 [×4], C2×Dic5 [×2], C5⋊D4 [×2], C2×C20 [×3], C2×C20 [×2], C5×D4 [×2], C5×Q8 [×2], C22×D5, C22×C10 [×2], C22.36C24, C4×Dic5, C4×Dic5 [×2], C10.D4 [×2], C10.D4 [×2], C4⋊Dic5 [×2], C4⋊Dic5 [×4], D10⋊C4 [×2], D10⋊C4 [×2], C23.D5 [×4], C4×C20, C5×C22⋊C4 [×4], C2×Dic10 [×2], C2×C4×D5, C22×Dic5 [×2], C2×C5⋊D4 [×2], D4×C10, Q8×C10, C202Q8, C42⋊D5, Dic5.14D4 [×2], C23.D10 [×2], Dic5.5D4 [×2], C22.D20 [×2], D4×Dic5, C202D4, Q8×Dic5, D103Q8, C5×C4.4D4, C42.144D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4), 2- (1+4), C22×D5 [×7], C22.36C24, D42D5 [×2], C23×D5, C2×D42D5, D48D10, D4.10D10, C42.144D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=1, d2=b2, ab=ba, cac-1=dad-1=a-1, cbc-1=a2b-1, dbd-1=b-1, dcd-1=b2c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 108 33 113)(2 114 34 109)(3 110 35 115)(4 116 36 101)(5 102 37 117)(6 118 38 103)(7 104 39 119)(8 120 40 105)(9 106 31 111)(10 112 32 107)(11 131 56 91)(12 92 57 132)(13 133 58 93)(14 94 59 134)(15 135 60 95)(16 96 51 136)(17 137 52 97)(18 98 53 138)(19 139 54 99)(20 100 55 140)(21 90 149 63)(22 64 150 81)(23 82 141 65)(24 66 142 83)(25 84 143 67)(26 68 144 85)(27 86 145 69)(28 70 146 87)(29 88 147 61)(30 62 148 89)(41 154 74 122)(42 123 75 155)(43 156 76 124)(44 125 77 157)(45 158 78 126)(46 127 79 159)(47 160 80 128)(48 129 71 151)(49 152 72 130)(50 121 73 153)
(1 73 20 85)(2 69 11 41)(3 75 12 87)(4 61 13 43)(5 77 14 89)(6 63 15 45)(7 79 16 81)(8 65 17 47)(9 71 18 83)(10 67 19 49)(21 135 158 118)(22 104 159 96)(23 137 160 120)(24 106 151 98)(25 139 152 112)(26 108 153 100)(27 131 154 114)(28 110 155 92)(29 133 156 116)(30 102 157 94)(31 48 53 66)(32 84 54 72)(33 50 55 68)(34 86 56 74)(35 42 57 70)(36 88 58 76)(37 44 59 62)(38 90 60 78)(39 46 51 64)(40 82 52 80)(91 122 109 145)(93 124 101 147)(95 126 103 149)(97 128 105 141)(99 130 107 143)(111 129 138 142)(113 121 140 144)(115 123 132 146)(117 125 134 148)(119 127 136 150)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 20 19)(2 18 11 9)(3 8 12 17)(4 16 13 7)(5 6 14 15)(21 125 158 148)(22 147 159 124)(23 123 160 146)(24 145 151 122)(25 121 152 144)(26 143 153 130)(27 129 154 142)(28 141 155 128)(29 127 156 150)(30 149 157 126)(31 34 53 56)(32 55 54 33)(35 40 57 52)(36 51 58 39)(37 38 59 60)(41 83 69 71)(42 80 70 82)(43 81 61 79)(44 78 62 90)(45 89 63 77)(46 76 64 88)(47 87 65 75)(48 74 66 86)(49 85 67 73)(50 72 68 84)(91 106 109 98)(92 97 110 105)(93 104 101 96)(94 95 102 103)(99 108 107 100)(111 114 138 131)(112 140 139 113)(115 120 132 137)(116 136 133 119)(117 118 134 135)

G:=sub<Sym(160)| (1,108,33,113)(2,114,34,109)(3,110,35,115)(4,116,36,101)(5,102,37,117)(6,118,38,103)(7,104,39,119)(8,120,40,105)(9,106,31,111)(10,112,32,107)(11,131,56,91)(12,92,57,132)(13,133,58,93)(14,94,59,134)(15,135,60,95)(16,96,51,136)(17,137,52,97)(18,98,53,138)(19,139,54,99)(20,100,55,140)(21,90,149,63)(22,64,150,81)(23,82,141,65)(24,66,142,83)(25,84,143,67)(26,68,144,85)(27,86,145,69)(28,70,146,87)(29,88,147,61)(30,62,148,89)(41,154,74,122)(42,123,75,155)(43,156,76,124)(44,125,77,157)(45,158,78,126)(46,127,79,159)(47,160,80,128)(48,129,71,151)(49,152,72,130)(50,121,73,153), (1,73,20,85)(2,69,11,41)(3,75,12,87)(4,61,13,43)(5,77,14,89)(6,63,15,45)(7,79,16,81)(8,65,17,47)(9,71,18,83)(10,67,19,49)(21,135,158,118)(22,104,159,96)(23,137,160,120)(24,106,151,98)(25,139,152,112)(26,108,153,100)(27,131,154,114)(28,110,155,92)(29,133,156,116)(30,102,157,94)(31,48,53,66)(32,84,54,72)(33,50,55,68)(34,86,56,74)(35,42,57,70)(36,88,58,76)(37,44,59,62)(38,90,60,78)(39,46,51,64)(40,82,52,80)(91,122,109,145)(93,124,101,147)(95,126,103,149)(97,128,105,141)(99,130,107,143)(111,129,138,142)(113,121,140,144)(115,123,132,146)(117,125,134,148)(119,127,136,150), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,20,19)(2,18,11,9)(3,8,12,17)(4,16,13,7)(5,6,14,15)(21,125,158,148)(22,147,159,124)(23,123,160,146)(24,145,151,122)(25,121,152,144)(26,143,153,130)(27,129,154,142)(28,141,155,128)(29,127,156,150)(30,149,157,126)(31,34,53,56)(32,55,54,33)(35,40,57,52)(36,51,58,39)(37,38,59,60)(41,83,69,71)(42,80,70,82)(43,81,61,79)(44,78,62,90)(45,89,63,77)(46,76,64,88)(47,87,65,75)(48,74,66,86)(49,85,67,73)(50,72,68,84)(91,106,109,98)(92,97,110,105)(93,104,101,96)(94,95,102,103)(99,108,107,100)(111,114,138,131)(112,140,139,113)(115,120,132,137)(116,136,133,119)(117,118,134,135)>;

G:=Group( (1,108,33,113)(2,114,34,109)(3,110,35,115)(4,116,36,101)(5,102,37,117)(6,118,38,103)(7,104,39,119)(8,120,40,105)(9,106,31,111)(10,112,32,107)(11,131,56,91)(12,92,57,132)(13,133,58,93)(14,94,59,134)(15,135,60,95)(16,96,51,136)(17,137,52,97)(18,98,53,138)(19,139,54,99)(20,100,55,140)(21,90,149,63)(22,64,150,81)(23,82,141,65)(24,66,142,83)(25,84,143,67)(26,68,144,85)(27,86,145,69)(28,70,146,87)(29,88,147,61)(30,62,148,89)(41,154,74,122)(42,123,75,155)(43,156,76,124)(44,125,77,157)(45,158,78,126)(46,127,79,159)(47,160,80,128)(48,129,71,151)(49,152,72,130)(50,121,73,153), (1,73,20,85)(2,69,11,41)(3,75,12,87)(4,61,13,43)(5,77,14,89)(6,63,15,45)(7,79,16,81)(8,65,17,47)(9,71,18,83)(10,67,19,49)(21,135,158,118)(22,104,159,96)(23,137,160,120)(24,106,151,98)(25,139,152,112)(26,108,153,100)(27,131,154,114)(28,110,155,92)(29,133,156,116)(30,102,157,94)(31,48,53,66)(32,84,54,72)(33,50,55,68)(34,86,56,74)(35,42,57,70)(36,88,58,76)(37,44,59,62)(38,90,60,78)(39,46,51,64)(40,82,52,80)(91,122,109,145)(93,124,101,147)(95,126,103,149)(97,128,105,141)(99,130,107,143)(111,129,138,142)(113,121,140,144)(115,123,132,146)(117,125,134,148)(119,127,136,150), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,20,19)(2,18,11,9)(3,8,12,17)(4,16,13,7)(5,6,14,15)(21,125,158,148)(22,147,159,124)(23,123,160,146)(24,145,151,122)(25,121,152,144)(26,143,153,130)(27,129,154,142)(28,141,155,128)(29,127,156,150)(30,149,157,126)(31,34,53,56)(32,55,54,33)(35,40,57,52)(36,51,58,39)(37,38,59,60)(41,83,69,71)(42,80,70,82)(43,81,61,79)(44,78,62,90)(45,89,63,77)(46,76,64,88)(47,87,65,75)(48,74,66,86)(49,85,67,73)(50,72,68,84)(91,106,109,98)(92,97,110,105)(93,104,101,96)(94,95,102,103)(99,108,107,100)(111,114,138,131)(112,140,139,113)(115,120,132,137)(116,136,133,119)(117,118,134,135) );

G=PermutationGroup([(1,108,33,113),(2,114,34,109),(3,110,35,115),(4,116,36,101),(5,102,37,117),(6,118,38,103),(7,104,39,119),(8,120,40,105),(9,106,31,111),(10,112,32,107),(11,131,56,91),(12,92,57,132),(13,133,58,93),(14,94,59,134),(15,135,60,95),(16,96,51,136),(17,137,52,97),(18,98,53,138),(19,139,54,99),(20,100,55,140),(21,90,149,63),(22,64,150,81),(23,82,141,65),(24,66,142,83),(25,84,143,67),(26,68,144,85),(27,86,145,69),(28,70,146,87),(29,88,147,61),(30,62,148,89),(41,154,74,122),(42,123,75,155),(43,156,76,124),(44,125,77,157),(45,158,78,126),(46,127,79,159),(47,160,80,128),(48,129,71,151),(49,152,72,130),(50,121,73,153)], [(1,73,20,85),(2,69,11,41),(3,75,12,87),(4,61,13,43),(5,77,14,89),(6,63,15,45),(7,79,16,81),(8,65,17,47),(9,71,18,83),(10,67,19,49),(21,135,158,118),(22,104,159,96),(23,137,160,120),(24,106,151,98),(25,139,152,112),(26,108,153,100),(27,131,154,114),(28,110,155,92),(29,133,156,116),(30,102,157,94),(31,48,53,66),(32,84,54,72),(33,50,55,68),(34,86,56,74),(35,42,57,70),(36,88,58,76),(37,44,59,62),(38,90,60,78),(39,46,51,64),(40,82,52,80),(91,122,109,145),(93,124,101,147),(95,126,103,149),(97,128,105,141),(99,130,107,143),(111,129,138,142),(113,121,140,144),(115,123,132,146),(117,125,134,148),(119,127,136,150)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,20,19),(2,18,11,9),(3,8,12,17),(4,16,13,7),(5,6,14,15),(21,125,158,148),(22,147,159,124),(23,123,160,146),(24,145,151,122),(25,121,152,144),(26,143,153,130),(27,129,154,142),(28,141,155,128),(29,127,156,150),(30,149,157,126),(31,34,53,56),(32,55,54,33),(35,40,57,52),(36,51,58,39),(37,38,59,60),(41,83,69,71),(42,80,70,82),(43,81,61,79),(44,78,62,90),(45,89,63,77),(46,76,64,88),(47,87,65,75),(48,74,66,86),(49,85,67,73),(50,72,68,84),(91,106,109,98),(92,97,110,105),(93,104,101,96),(94,95,102,103),(99,108,107,100),(111,114,138,131),(112,140,139,113),(115,120,132,137),(116,136,133,119),(117,118,134,135)])

Matrix representation G ⊆ GL6(𝔽41)

4000000
0400000
00260290
00026029
00120150
00012015
,
3200000
090000
0030122426
001911717
0017151129
0034242230
,
010000
100000
000007
0000356
000700
0035600
,
0400000
100000
0000357
0000366
0035700
0036600

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,26,0,12,0,0,0,0,26,0,12,0,0,29,0,15,0,0,0,0,29,0,15],[32,0,0,0,0,0,0,9,0,0,0,0,0,0,30,19,17,34,0,0,12,11,15,24,0,0,24,7,11,22,0,0,26,17,29,30],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,35,0,0,0,0,7,6,0,0,0,35,0,0,0,0,7,6,0,0],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,0,35,36,0,0,0,0,7,6,0,0,35,36,0,0,0,0,7,6,0,0] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I4J4K···4O5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order122222244444444444···45510···101010101020···2020202020
size111144202244441010101020···20222···288884···48888

50 irreducible representations

dim11111111111122222244444
type++++++++++++++++++--+-
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D10D102+ (1+4)2- (1+4)D42D5D48D10D4.10D10
kernelC42.144D10C202Q8C42⋊D5Dic5.14D4C23.D10Dic5.5D4C22.D20D4×Dic5C202D4Q8×Dic5D103Q8C5×C4.4D4C4.4D4C20C42C22⋊C4C2×D4C2×Q8C10C10C4C2C2
# reps11122221111124282211444

In GAP, Magma, Sage, TeX

C_4^2._{144}D_{10}
% in TeX

G:=Group("C4^2.144D10");
// GroupNames label

G:=SmallGroup(320,1354);
// by ID

G=gap.SmallGroup(320,1354);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,100,675,570,409,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=b^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽